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Abstract
The description of energy absorption in a fully ionized plasma in an electric
field is generalized to arbitrary frequencies and field strengths. The limiting
cases of weak and of high fields as well as the frequency dependence of the
energy absorption rate are discussed.

PACS numbers: 52.25.Os, 52.25.Dg, 52.38.Dx

1. Introduction

In papers on collisional absorption in strong high-frequency fields, it is usually assumed that
the contribution of collisions in the current balance equation is small compared to that of the
field [1–4]. This assumption is reflected by the so-called Silin ansatz [1] or by a transformation
into the Kramers–Henneberger frame [5, 6] oscillating with the quiver velocity of free particles
in a field. In linear response approaches, on the other hand, generalized Drude formulae with
dynamical electron–ion collision frequencies can be derived [7, 8]. The two approaches
coincide in the case of weak fields and high frequencies. In this paper, a generalization for
arbitrary frequencies and field strengths is given. Starting point is the electrical current balance
equation which is nonlinear in the current j. The induced field follows from the mean-field
term. In the collisional part, it is possible to introduce a generalized dynamical electron–
ion collision frequency valid for arbitrary field strength. In the linear response regime, the
familiar expressions are obtained. In the vicinity of the plasma frequency, however, there
could occur resonance phenomena, i.e., the occurrence of large current amplitudes for small
field amplitude E0. Therefore, in this area, the electron–ion collision frequency depends on
the current in a nonlinear way. This might have some consequences for physical properties
like energy absorption or reflectivity.
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2. Electrical current balance

We consider a fully ionized plasma. The balance equation for the electrical current density
can be written in the following form:

d

dt
j(t) − ε0ω

2
pE(t) + ω2

p

∫ t

t0

dt̄j(t̄) =
∑

c

∫
d3pc

(2πh̄)3

ecpc

mc

Ic(pc, t), (1)

with the plasma frequency ω2
p = ∑

c

e2
c nc

ε0mc
and Ic being the general collision integral for

species c. In contrast to former papers [9, 10], the third term on the left-hand side is included
describing a polarization stemming from the mean-field contribution. The right-hand side of
the above equation describes the friction −R due to collisions. The balance equation can be
written as

d

dt
j(t) + R{j} + ω2

p

∫ t

t0

dt̄j(t̄) = ε0ω
2
pE(t). (2)

Introducing the polarization P(t) = ∫ t

t0
dt̄j(t̄), we would get an equation for a driven harmonic

oscillator with nonlinear friction. The friction term is a nonlinear non-Markovian functional
of the current which reads (to lowest order in the electron–ion interaction)

R{j} = 1
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h̄

(
ee

me

− ei

mi

)
V 2

ei(q)
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, (4)

and the dynamic structure factors S and density response functions L of the two subsystems,
electrons and ions.

There are two well-known limiting cases: in linear response, the exponential function
can be expanded and the friction term is linear in the current with the dynamical collision
frequency as prefactor

−iωj (ω) + ν(ω)j (ω) +
ω2

p

−iω
j (ω) = ε0ω

2
pE(ω), (5)

where E(ω) is the Fourier component of the external field. For strong fields, on the other
hand, the collisions are a small correction to the quiver motion of the particles and one can
use in the exponential

j ≈ j0 =
∑

a

e2
ana

ma

∫ t

t0

dt ′E(t ′), (6)

which corresponds to the so-called Silin ansatz. For a harmonic field E = E0 cos ωt , this
leads to expansions [3, 4, 6] in terms of Bessel functions Jn, see also [11], and the current
j(t) = ∑∞

n=1 jn,0 sin (nωt + φn) can be calculated as a function of the electrical field.
In the general case, equation (2) cannot be solved simply for j . Therefore, we propose

the following scheme. As the higher harmonics are much smaller than the fundamental [4], in
R{j} the approximation j (t) = j1,0 sin ωt is used. Then amplitude and phase of the external
field E(t) = E0 cos (ωt − φ1) are calculated as a function of j1,0. After that, this relation has
to be inverted. The higher harmonics of the current can also be calculated first as functions
of j1,0.
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Treating j1,0 as the independent variable, the amplitude and the phase of the external
electric field follow from

E(ω) = 1

ε0ω2
p

[
ω + iν1(ω, j1,0) − ω2

p

ω

]
j1,0

2
. (7)

With E(ω) = E0
2 eiφ1 , amplitude and phase are given by
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ε0ω2
p

√[
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p

ω

]2

+ [Re ν1(ω, j1,0)]2

tan φ1 = Re ν1(ω, j1,0)

ω − Im ν1(ω, j1,0) − ω2
p

ω

.

(8)

Note that in the vicinity of the plasma frequency, ω ≈ ωp, there could occur resonance
phenomena, i.e., the occurrence of large current amplitude j1,0 for small field amplitude
E0. Although the external field is small, the collision frequency depends on the current in a
nonlinear way, cf equation (9).

3. Collision frequency

The generalized collision frequency is given by

ν1(ω) = i
2

j1,0

∞∑
m=−∞

∫
d3q

(2πh̄)3
q · nF(q;mω)Jm−1(z)Jm(z), (9)

with z = q · nv1,0/(h̄ω) and nv1,0 = j1,0/(neee) and n being the unit vector in field direction.
Let us have a look at the linear response case j1,0 → 0. To lowest order one has

Jn = (z/2)n/n!, and only the terms with m = 0 and m = 1 contribute in the above equation.
It follows that
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For high frequencies F(q, ω) ≈ ee/(meh̄)V 2
ei(q)niSii (q)LR

ee(q;ω) and introducing the
dielectric function of the electron subsystem, we have
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With the dielectric function in random phase approximation, this is a well-known expression
[7, 8].

4. Higher harmonics

From equation (2) there follows for the higher harmonics of the current l > 1

jl(ω) = − 1(
lω − ω2

p

lω

)
∞∑

m=−∞

1

il

∫
d3q

(2πh̄)3
qF(q;mω)Jm−l (z)Jm(z). (12)

In the following, we assume that the function F depends on the modulus of q only. For
the Bessel functions there holds that Jm−l (−z)Jm(−z) = (−1)lJm−l (z)Jm(z). Therefore, the
integrand in equation (12) is an odd function of q for even l and an even function for odd l and
consequently only odd harmonics of the current can exist.
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5. Energy absorption

The energy absoption rate is given by

νE = 〈j · E〉
〈ε0E · E〉 = j1,0 · Im E(ω)

ε02[(Re E(ω))2 + (Im E(ω))2]

= ω2
p[

ω − ω2
p

ω
− Im ν1(ω)

]2
+ [Re ν1(ω)]2

Re ν1(ω). (13)

Here, the brackets denote cycle-averaged quantities [4, 12]. In the second line of the equation,
the dependence on the electrical field strength is implicit via the current amplitude j1,0 in the
generalized dynamical collision frequency. Near the plasma frequency, the energy absorption
is enhanced due to the collective motion of the electrons. In the high-frequency limit, however,
we get the familiar expression νE = ω2

p

/
ω2 Re ν1(ω). Calculations as well as details of the

derivation will be given elsewhere.
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